

Continuous Monitoring for Nutrients: State of the Technology and State of the Science

Brian A. Pellerin

USGS, California Water Science Center, Sacramento, CA bpeller@usgs.gov, 916-278-3167

NWQMC Webinar, 9/24/14

U.S. Department of the Interior U.S. Geological Survey

Acknowledgements

Contributors to this talk

- Brian Bergamaschi, Bryan Downing, JohnFranco Saraceno (USGS, CA Water Science Center)
- Jennifer Graham, Guy Foster, Andy Ziegler (USGS, KS Water Science Center)
- Ryan Jackson (USGS, IL Water Science Center)
- Jessica Garrett, Steve Kalkhoff (USGS, IA Water Science Center)
- Amanda Booth, Eduardo Patino (USGS, FL Water Science Center)
- Beth Stauffer, Denise Shaw (EPA)
- Many, many more...

Funding sources

- USGS (NAWQA, Office of Water Quality)
- Federal and state cooperators and partners
- Many more...

Continuous Monitoring

- 24/7 data collection
- Wide range of constituents with direct or proxy measurements
- Intervals of seconds to hours
- Capture all events
- Remote access and control of sensors

State of the Technology

- 1. Continuous water quality monitoring is not new
 - Water temperature → turbidity are common
- Continuous nitrate monitoring is beyond "proof-of-concept"
 - But not (yet) simple, cheap or easy

Ion Selective Electrodes (ISE)

Direct potentiometry between a sensing electrode and a reference electrode

Advantages:

- Inexpensive (\$<1K)</p>
- Available for nitrate and ammonium, ...
- Easy to use
- Large measurement range
- Not influenced by color or turbidity

Disadvantages:

- Lower resolution, accuracy, and precision
- Subject to ionic interferences
- High instrument drift
- Fouling problems

Available since the 1970s...

Wet Chemical Sensors

Wet chemical colorimetric reaction, detection by photometry

Advantages:

- High resolution, accuracy and precision
- Multiple constituents (nitrate, ammonium, orthophosphate, silica)
- Relatively fast response time
- Potential for in situ calibrations

Disadvantages:

- Expensive (\$15-20K)
- High power requirement
- High potential for fouling
- High maintenance costs
- Requires reagents
- Generates waste

Available since the 1980s...

Optical (UV) Sensors

Spectral absorption by a photometer

Advantages:

- High resolution, accuracy and precision
- Large measurement range
- Chemical-free
- Fast response time
- Additional optical information in spectra
- Anti-fouling measures

Disadvantages:

- Expensive (\$15-25K)
- Nitrate (and nitrite) only
- High power requirement
- High maintenance costs
- Subject to a range of optical interferences

Available since early 2000s...

UV PHOTOMETER

UV Nitrate: From Lab to Field

- Spectrophotometer: Measures the intensity of light after passing through a solution
- Similar to Standard Method 4500-NO3- B (APHA, AWWA, WEF, 1995)

- Miniaturized components
- Rugged housings
- Efficient power handling
- No (or few) moving parts
- Internal dataloggers and controllers
- Anti-fouling systems
- On-board data processing

Choosing a UV Nitrate Sensor

Differences affect instrument range, accuracy drift, tolerance for interferences, power consumption, field maintenance, and **COST**

- History (wastewater vs. oceanography)
- Light source (deuterium vs. xenon flash lamp)
- Measurement path (path length, optical window materials)
- Spectrophotometer (wavelengths measured)
- Processing algorithm (local, global)
- Reference detectors
- Anti-fouling methods (wipers, air, copper)

UV Nitrate Sensor Design

Keys for high quality UV nitrate sensor measurements:

1) Choose appropriate path length (0.5 – 100 mm)

2) Measure necessary wavelengths (2 – 256 UV wavelengths)

www.mbari.org

UV Nitrate Sensor Design

Keys for high quality UV nitrate sensor measurements:

3) Get the right algorithm

- Proprietary algorithms
 - Based on field and lab data
- Calibration types
 - Global
 - Application-specific (wastewater, seawater, etc.)
 - Local
- Compensation for interferences

Same sensor, same solution, different algorithm!

Anti-Fouling

- A dirty optical sensor is virtually worthless
- Wide range of anti-fouling approaches:
 - Wipers
 - Compressed air
 - Copper/biocides

Photos: Dick Cartwright, USGS, NY Water Science Center; Joe Bell, USGS, MD Water Science Center

Wet Chemical Nutrient Sensors

- Field deployable, <u>wet chemical</u> sensor using standard colorimetric methods
- Available for orthophosphate, ammonium, nitrate, and silica
- USGS operates ~5 as part of testing / "proof-of-concept" for monitoring

Total Nitrogen / Phosphorus

- Standard lab methods use chemicals (alkaline persulfate oxidation) or high temperature (combustion)
- Surrogate approaches will likely be needed

Surrogate Approaches

- Current computed concentrations and loads using in-stream water-quality sensor measurements as surrogates for parameters that can't be measured directly
- Concentrations, loads, methods used, and models as well as published reports are available.
- Surrogate web pages: http://nrtwq.usgs.gov

Model: TP = 0.534 + 0.00111 TURB; $r^2 = 0.74$

Guidelines and Protocols

- Instrument characterization
- Guidelines for use in a range of environments
- Continued interactions with manufacturers

State of the Science

1. Revolution: Time dense data in real-time

2. New opportunities for:

- Water quality monitoring
- Load assessment
- Source identification
- Event detection
- Aquatic processes
- Real-time decision support

Nitrate variability – San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA

Nitrate variability - San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA

USGS Continuous Nitrate Monitoring

- 96 sites nationwide (operated in 24 states)
- Extensive network in the Mississippi River Basin
- Most nitrate monitoring funded by cooperators (several sites threatened)

Mississippi River Nitrate

- Strong correlation between in situ and discrete nitrate (depth- and width-integrated)
- Nitrate "flush" in spring 2013 (following 2012 drought)
- Dynamic nature, not well correlated with Q
- Estimated error ~ ± 4%

Can we improve load estimates?

- Differences in modeled vs. sensor loads of up to 30% in the spring (sensor > model)
- Order of magnitude lower uncertainty in the sensor vs. model loads
- Loads below the 10th and above the 90th percentiles during this period

(Pellerin et al., in review)

Can we improve load estimates?

- Differences in modeled vs. sensor loads of up to 30% in the spring (sensor > model)
- Order of magnitude lower uncertainty in the sensor vs. model loads
- Loads below the 10th and above the 90th percentiles during this period

Real-Time Management

"Record nitrate levels in Raccoon, Des Moines threaten Des Moines-area tap water" - Des Moines Register (May 10,2013)

Provisional Data Subject to Revision

Courtesy: Jessica Garrett, USGS, IA

Des Moines Water Works nitrate removal system:

- \$4 million installation (1992)
- \$7,000 per day to operate

Real-Time Management

"Record nitrate levels in Raccoon, Des Moines threaten Des Moines-area tap water" - Des Moines Register (May 10,2013)

Courtesy: Jessica Garrett, USGS, IA

Diurnal Variability in Indian Creek, KS

Diel variability in nitrate concentrations was highest immediately downstream a WWTF (College site) and lowest at the upstream sites.

r2=0.97 p<0.01

n=174

COLLEGE

Aquatic N Metabolism

Application of nitrate sensors to understand how rivers transform and transport nitrogen in Ichetuknee Spring, Florida

Upstream $[NO_3]$ constant Integrated diel $[NO_3]$ variation = uptake (U_a) Total removal yields denitrification (U_{den}) by difference

Heffernan and Cohen, 2010

Estimating Aquatic N Retention

- Refine modeled aquatic N decay terms (e.g. SPARROW)
- Help with estimating groundwater N loading?

Drivers of N Uptake

Evidence for draw down of N (and P) to support algal production?

Nitrate Variability in Tidal Environments

- Commonly exhibits semi-diurnal fluctuations
- NO₃- peaks at times of low tide and salinity minima
- Frequent inverse relation with salinity suggests dominant source is primary input(s) of freshwater

North American Vertical Datum of 1988

Dick Cartwright, USGS, NY

Evaluating Ecological Condition

Daily statistics show fair to poor water quality & ecological condition at mid-bay location

Dick Cartwright, USGS, NY

rarely exceeded
EPA Poor Ecological
Condition Criterion for
DIN (>0.5 mg/L as N)

Daily mean nitrate sometimes remained below

EPA Fair Ecological

Condition Criterion for

DIN (0.1 mg/L as N)

Moving Boat Surveys

Spatial mapping to identify hot spots (sources or sinks), mixing, etc.

Autonomous Underwater Vehicle Surveys

Newcastle Reservoir, Utah

Milwaukee River Estuary, Milwaukee, WI

September 7-9, 2010

From: Jackson and Reneau USGS SIR 2014-5043

The (Near) Future

If you don't know where you're going, you might not get there." – Yogi Berra

New Protocols and Guidelines

Key to an accurate, comparable, real-time data

Examples:

- National Water Quality Monitoring Council (NEMI, Sensor Workgroup, ...)
- USGS Techniques and Methods Reports

USGS Techniques and Methods Report on in situ fluorometers (to be published in 2015) will include:

- Matrix interferences
- Sensor calibration and validation
- Environmental variability
- Units
- ..

Matrix effects on fluorometers

Lower Cost, Easier to Use, More Efficient

- "Plug-and-play" integration for sensors
- Remote communication through phones and tablets
- Automated QAQC and metadata with new databases
- Partnerships with manufacturers (e.g. Nutrient Sensor Challenge)

- In partnership with the Alliance for Coastal Technologies (ACT), Challenging Nutrients is developing the Nutrient Sensor Challenge (www.nutrients-challenge.org)
- Goal: Accelerate development and commercial availability of affordable, reliable, and accurate in situ nutrient sensors
- Incentives: Testing/verification, publicity, recognition, market access
- How you can be involved:
 - Visit the website and indicate your support and/or interest.
 - Email info@nutrients-challenge.org for more information

Expand Applications

- Surface water
- Groundwater
- Edge-of-Field
 - Get out of the stream and on the landscape where runoff is directly affected by field practices
 - Reduce influence of "in stream" processes
 - Inform BMPs

Tulane University's Grand Challenge "Water Innovations: Reducing Hypoxia, Restoring Our Water" will seek technical market based solutions to combat hypoxia, a deadly deficiency of oxygen in water created by the excessive growth of phytoplankton. http://tulane.edu/tulaneprize/waterprize/

Next Generation Sensors

From "proof-of-concept" to "field ready":

- Low UV fluorometer
 - Target low UV fluorescence as unique indicator of wastewater presence
 - Indicators for the potential presence of pathogens and bacteria
- Algal taxa
- Sediment size
- Ammonia
- DNA

National Networks

How would we build <u>nationally-consistent</u>, <u>real-time</u>, <u>continuous</u> nutrient monitoring network thats:

- Meets monitoring needs (drinking water quality, TMDLs, edge-offield loads, coastal issues)
- 2. "Accelerates the pace of discovery" (White House Big Data Research and Development Initiative)
- Has some long-term "stability"
- 4. Improves our efficiency (from data collection to decision support)?

